
1

Tracking Patches that Fix Bugs
found by Static Bug Finders

Dongsun Kim
 Kyungpook National University

11th February 2022



2

Tracking Patches that Fix Bugs
found by Static Bug Finders

Dongsun Kim
 Kyungpook National University

11th February 2022



3

Tracking Patches that Fix Bugs
found by Static Bug Finders

Dongsun Kim
 Kyungpook National University

11th February 2022

Automated Program Repair



Debugging

4



0

25

50

75

100

Design Implmentation Testing Maintenance

Relative Costs to Fix 
Software Defects 
(Source: IBM Systems 
Sciences Institute)

1x
6.5x

15x

100x

67%
8%

12%

6%7%

Requirements
Design
Programming
Integration
Maintenance

Schach, R. (1999), Software Engineering, 

Fourth Edition, McGraw-Hill, Boston, MA, pp. 11.

Approximate relative costs of 
the phases of the software life cycle

Debugging is expensive
5



0

25

50

75

100

Design Implmentation Testing Maintenance

Goal of My Research
6



7

Automated
Debugging



8

Localization Prioritization Repair



9

Repair



10

Fixing one bug

Bug

Reports Source code 


files

Inspection



11

Fixing thousands of bugs?

2,530 bugs are reported
to the Mozilla projects
within November 2021.



12

First Genuine Approach (GenProg)

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding patches using genetic programming,” in Proceedings of the 31st 
International Conference on Software Engineering, 2009, pp. 364–374. doi: http://dx.doi.org/10.1109/ICSE.2009.5070536.




13

A Buggy
Program

P = {s1, s2, …, sn}

generate-and-validate



14

A Buggy
Program

P = {s1, s2, …, sn}

generate-and-validate

e,g., Insert, Replace, Remove
        statements

OperatorsP1′￼  ￼  ￼   ￼
P2′￼ 

Pm′￼ 

⋯



15

e,g., Insert, Replace, Remove
        statements

A Buggy
Program

Operators
P = {s1, s2, …, sn}

generate-and-validate

P1′￼  ￼  ￼   ￼
P2′￼ 

Pm′￼ 

⋯

P1′￼  ￼  ￼   ￼
P2′￼ 

Pm′￼ 

⋯



16

A Buggy
Program P1′￼ = {s′￼1 , s′￼2 , …, s′￼k }

generate-and-validate

P2′￼ = {…}

Pm′￼ = {…}

⋯

Patch Candidates

e,g., Insert, Replace, Remove
        statements

Operators
P = {s1, s2, …, sn}

P1′￼  ￼  ￼   ￼
P2′￼ 

Pm′￼ 

⋯

fitness(P′￼) =
|{t ∈ T |P′￼ passes t} |



17

P1′￼ = {s′￼1 , s′￼2 , …, s′￼k }

generate-and-validate

P2′￼ = {…}

Pm′￼ = {…}

⋯
Patch Candidates Fitness Function

fitness(P′￼) =
P = {s1, s2, …, sn}

|{t ∈ T |P′￼ passes t} |



18

P1′￼ = {s′￼1 , s′￼2 , …, s′￼k }

generate-and-validate

P2′￼ = {…}

Pm′￼ = {…}

⋯

Patch Candidates
e,g., Insert, Replace, Remove
        statements

Operators Fitness Function
fitness(P′￼) =

|{t ∈ T |P′￼ passes t} |



19

generate-and-validate

fitness(Px) = |T |
Until

P1′￼ = {s′￼1 , s′￼2 , …, s′￼k }
P2′￼ = {…}

Pm′￼ = {…}

⋯

Patch Candidates
e,g., Insert, Replace, Remove
        statements

Operators Fitness Function
fitness(P′￼) =

|{t ∈ T |P′￼ passes t} |

Iterate 



20

generate-and-validate

fitness(Px) = |T |
Until

P1′￼ = {s′￼1 , s′￼2 , …, s′￼k }
P2′￼ = {…}

Pm′￼ = {…}

⋯

Patch Candidates
e,g., Insert, Replace, Remove
        statements

Operators Fitness Function
fitness(P′￼) =

|{t ∈ T |P′￼ passes t} |

Iterate 

Patch



21

generate-and-validate Semantic-based techniques



22

A Decade-long Effort
How many bugs are correctly (plausibly) fixed?

(out of 395 bugs in Defects4J)



23

A Decade-long Effort
How many bugs are correctly (plausibly) fixed?

(out of 395 bugs in Defects4J)



24

Challenges
Defect Classes Fault Localization

Repair Patterns Correctness



25

Defect Classes

No comprehensive work on
defect classes vs. program repair. 

http://program-repair.org/defects4j-dissection/#!/



26

Fault Localization

Fault localization precision has a high impact on
the program repair performance.

Liu et al., “A critical review on the evaluation of automated program repair systems,” Journal of Systems and 
Software, vol. 171, p. 110817, Jan. 2021.



27

Patch Correctness

Still too many incorrect patches are generated
by program repair techqniues. 

H. Tian et al., “Evaluating Representation Learning of Code Changes for Predicting Patch Correctness in Program Repair,” in 
2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), Sep. 2020, pp. 981–992.



28

Tracking Patches that Fix Bugs
found by Static Bug Finders

Dongsun Kim
 Kyungpook National University

11th February 2022



29

Tracking Patches that Fix Bugs
found by Static Bug Finders

Dongsun Kim
 Kyungpook National University

11th February 2022

K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. L. Traon, “Mining Fix Patterns for FindBugs Violations,” IEEE 
Transactions on Software Engineering, vol. 47, no. 1, pp. 165–188, Jan. 2021, doi: 10.1109/TSE.2018.2884955.


https://doi.org/10.1109/TSE.2018.2884955


30

Pattern-based
Program Repair

…

Projects

Pattern Mining

Fix Patterns



31

Pattern-based
Program Repair

…

Projects

Pattern Mining

Fix Patterns

Buggy
Program



32

Pattern-based
Program Repair

…

Projects

Pattern Mining

Fix Patterns

Buggy
Program



33

Pattern-based
Program Repair

…

Projects

Pattern Mining

Fix Patterns

Buggy
Program

Fixed
Program



34

Pattern-based
Program Repair

…

Projects

Pattern Mining

Fix Patterns

Buggy
Program

Fixed
Program

Automated



35

Pattern-based
Program Repair

Buggy
Program

Fixed
Program

Automated

…

Projects

Pattern Mining

Fix Patterns

Still by Manual!



36

…

Projects

Pattern Mining

Fix Patterns

Still by Manual!

Program
Repair

Deep 
Learningmeets



37

Static Analysis Tools

Error Prone

Useful to detect

common bugs/defects.



38

Violations from Static Analysis Tools
Static analysis tools such as
FindBugs detect violations

PopulateRepositoryMojo.java file at revision bdf3fe in project nbm-maven-plugin.

1

Mining Fix Patterns for FindBugs Violations
Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, and Yves Le Traon

Abstract—Several static analysis tools, such as Splint or FindBugs, have been proposed to the software development community to
help detect security vulnerabilities or bad programming practices. However, the adoption of these tools is hindered by their high false
positive rates. If the false positive rate is too high, developers may get acclimated to violation reports from these tools, causing concrete
and severe bugs being overlooked. Fortunately, some violations are actually addressed and resolved by developers. We claim that
those violations that are recurrently fixed are likely to be true positives, and an automated approach can learn to repair similar unseen
violations. However, there is lack of a systematic way to investigate the distributions on existing violations and fixed ones in the wild,
that can provide insights into prioritizing violations for developers, and an effective way to mine code and fix patterns which can help
developers easily understand the reasons of leading violations and how to fix them.

In this paper, we first collect and track a large number of fixed and unfixed violations across revisions of software. The empirical
analyses reveal that there are discrepancies in the distributions of violations that are detected and those that are fixed, in terms of
occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify patterns in violations
and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to regroup similar
instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results show that
developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that the
yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair.

Index Terms—Fix pattern, pattern mining, program repair, findbugs violation, unsupervised learning.

F

1 INTRODUCTION

Modern software projects widely use static code analysis
tools to assess software quality and identify potential de-
fects. Several commercial [1], [2], [3] and open-source [4],
[5], [6], [7] tools are integrated into many software projects,
including operating system development projects [8]. For
example, Java-based projects often adopt FindBugs [4] or
PMD [5] while C projects use Splint [6], cppcheck [7],
or Clang Static Analyzer [9], while Linux driver code
are systematically assessed with a battery of static analyzers
such as Sparse and the LDV toolkit. Developers may benefit
from the tools before running a program in real environ-
ments even though those tools do not guarantee that all
identified defects are real bugs [10].

Static analysis can detect several types of defects such
as security vulnerabilities, performance issues, and bad
programming practices (so-called code smells) [11]. Re-
cent studies denote those defects as static analysis viola-
tions [12] or alerts [13]. In the remainder of this paper,
we simply refer to them as violations. Fig. 1 shows a viola-
tion instance, detected by FindBugs, which is a violation
tagged BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS,
as it does not comply with the programming rule that the
implementation of method equals(Object obj) should
not make any assumption about the type of its obj argu-
ment [14].

• Kiu Liu, Dongsun Kim, Tegawendé F. Bissyandé, and Yves Le Traon are
with the Interdisciplinary Centre for Security, Reliability and Trust (SnT)
at University of Luxembourg, Luxembourg.
E-mail: {kui.liu, dongsun.kim, tegawende.bissyande, yves.letraon}@uni
.lu

• Shin Yoo is with the School of Computing, KAIST, Daejeon, Republic of
Korea.
E-mail: shin.yoo@kaist.ac.kr

public boolean equals(Object obj) {
// Violation Type:
// BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS
return getModule().equals(

((ModuleWrapper) obj).getModule());
}

Fig. 1: Example of a detected violation, taken from Popu-

lateRepositoryMojo.java file at revision bdf3fe in project
nbm-maven-plugin1.

As later addressed by developers via a patch represented
in Fig. 2, the method should return false if obj is not
of the same type as the object being compared. In this
case, when the type of obj argument is not the type of
ModuleWrapper, a java.lang.ClassCastException
should be thrown.

public boolean equals(Object obj) {
- return getModule().equals(
- ((ModuleWrapper) obj).getModule());
+ return obj instanceof ModuleWrapper &&
+ getModule().equals(
+ ((ModuleWrapper) obj).getModule());

}

Fig. 2: Example of fixing violation, taken from Commit
0fd11c of project nbm-maven-plugin.

Despite wide adoption and popularity of static analysis
tools (e.g., FindBugs has more than 270K downloads2),
accepting the results of the tools is not yet guaranteed.
Violations identified by static analysis tools are often ig-
nored by developers [15], since static analysis tools may

1https://github.com/mojohaus/nbm-maven-plugin
2http://findbugs.sourceforge.net/users.html

Example

Developers may (or may not)
change source code to fix
the violations.

1

Mining Fix Patterns for FindBugs Violations
Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, and Yves Le Traon

Abstract—Several static analysis tools, such as Splint or FindBugs, have been proposed to the software development community to
help detect security vulnerabilities or bad programming practices. However, the adoption of these tools is hindered by their high false
positive rates. If the false positive rate is too high, developers may get acclimated to violation reports from these tools, causing concrete
and severe bugs being overlooked. Fortunately, some violations are actually addressed and resolved by developers. We claim that
those violations that are recurrently fixed are likely to be true positives, and an automated approach can learn to repair similar unseen
violations. However, there is lack of a systematic way to investigate the distributions on existing violations and fixed ones in the wild,
that can provide insights into prioritizing violations for developers, and an effective way to mine code and fix patterns which can help
developers easily understand the reasons of leading violations and how to fix them.

In this paper, we first collect and track a large number of fixed and unfixed violations across revisions of software. The empirical
analyses reveal that there are discrepancies in the distributions of violations that are detected and those that are fixed, in terms of
occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify patterns in violations
and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to regroup similar
instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results show that
developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that the
yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair.

Index Terms—Fix pattern, pattern mining, program repair, findbugs violation, unsupervised learning.

F

1 INTRODUCTION

Modern software projects widely use static code analysis
tools to assess software quality and identify potential de-
fects. Several commercial [1], [2], [3] and open-source [4],
[5], [6], [7] tools are integrated into many software projects,
including operating system development projects [8]. For
example, Java-based projects often adopt FindBugs [4] or
PMD [5] while C projects use Splint [6], cppcheck [7],
or Clang Static Analyzer [9], while Linux driver code
are systematically assessed with a battery of static analyzers
such as Sparse and the LDV toolkit. Developers may benefit
from the tools before running a program in real environ-
ments even though those tools do not guarantee that all
identified defects are real bugs [10].

Static analysis can detect several types of defects such
as security vulnerabilities, performance issues, and bad
programming practices (so-called code smells) [11]. Re-
cent studies denote those defects as static analysis viola-
tions [12] or alerts [13]. In the remainder of this paper,
we simply refer to them as violations. Fig. 1 shows a viola-
tion instance, detected by FindBugs, which is a violation
tagged BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS,
as it does not comply with the programming rule that the
implementation of method equals(Object obj) should
not make any assumption about the type of its obj argu-
ment [14].

• Kiu Liu, Dongsun Kim, Tegawendé F. Bissyandé, and Yves Le Traon are
with the Interdisciplinary Centre for Security, Reliability and Trust (SnT)
at University of Luxembourg, Luxembourg.
E-mail: {kui.liu, dongsun.kim, tegawende.bissyande, yves.letraon}@uni
.lu

• Shin Yoo is with the School of Computing, KAIST, Daejeon, Republic of
Korea.
E-mail: shin.yoo@kaist.ac.kr

public boolean equals(Object obj) {
// Violation Type:
// BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS
return getModule().equals(

((ModuleWrapper) obj).getModule());
}

Fig. 1: Example of a detected violation, taken from Popu-

lateRepositoryMojo.java file at revision bdf3fe in project
nbm-maven-plugin1.

As later addressed by developers via a patch represented
in Fig. 2, the method should return false if obj is not
of the same type as the object being compared. In this
case, when the type of obj argument is not the type of
ModuleWrapper, a java.lang.ClassCastException
should be thrown.

public boolean equals(Object obj) {
- return getModule().equals(
- ((ModuleWrapper) obj).getModule());
+ return obj instanceof ModuleWrapper &&
+ getModule().equals(
+ ((ModuleWrapper) obj).getModule());

}

Fig. 2: Example of fixing violation, taken from Commit
0fd11c of project nbm-maven-plugin.

Despite wide adoption and popularity of static analysis
tools (e.g., FindBugs has more than 270K downloads2),
accepting the results of the tools is not yet guaranteed.
Violations identified by static analysis tools are often ig-
nored by developers [15], since static analysis tools may

1https://github.com/mojohaus/nbm-maven-plugin
2http://findbugs.sourceforge.net/users.html

Commit 0fd11c of project nbm-maven-plugin 

Example



39

How to fix them?
FindBugs



40

Fixing based on bug description?



41

Fixing based on bug description?
BC: Equals method should not assume anything about the type of its argument 
(BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS)

The equals(Object o) method shouldn't make any assumptions about the type of o. It should simply return false if o is not the 
same type as this.

BIT: Check for sign of bitwise operation (BIT_SIGNED_CHECK)

This method compares an expression such as ((event.detail & SWT.SELECTED) > 0). Using bit arithmetic and then 
comparing with the greater than operator can lead to unexpected results (of course depending on the value of 
SWT.SELECTED). If SWT.SELECTED is a negative number, this is a candidate for a bug. Even when SWT.SELECTED is not 
negative, it seems good practice to use '!= 0' instead of '> 0'.

CN: Class implements Cloneable but does not define or use clone method (CN_IDIOM)


Class implements Cloneable but does not define or use the clone method.




42

Fixing based on bug description?
BC: Equals method should not assume anything about the type of its argument 
(BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS)

The equals(Object o) method shouldn't make any assumptions about the type of o. It should simply return false if o is not the 
same type as this.

BIT: Check for sign of bitwise operation (BIT_SIGNED_CHECK)

This method compares an expression such as ((event.detail & SWT.SELECTED) > 0). Using bit arithmetic and then 
comparing with the greater than operator can lead to unexpected results (of course depending on the value of 
SWT.SELECTED). If SWT.SELECTED is a negative number, this is a candidate for a bug. Even when SWT.SELECTED is not 
negative, it seems good practice to use '!= 0' instead of '> 0'.

CN: Class implements Cloneable but does not define or use clone method (CN_IDIOM)


Class implements Cloneable but does not define or use the clone method.


Requires strong background knowledge.

Provides not enough details.



43

Revision
History

Collecting violation-fixing changes



44

Revision
History

Program
before
changes

Collecting violation-fixing changes



45

Revision
History

Program
before
changes

FindBugs



46

Revision
History

Program
before
changes



47

Revision
History

Program
before
changes

Patches



48

Revision
History

Program
before
changes



49

Revision
History

Program
before
changes

Program
after
changes

FindBugs



50

Revision
History

Program
before
changes

Program
after
changes



51

Revision
History

Program
before
changes

Program
after
changes



52

Revision
History

Idea: Mining violation-fixing changes patterns

Violation-fixing
Changes

Pattern Mining

Fix Patterns



Approach

53



54

Overview



55

…

…
…
…
…… …

Projects

Commits

Collecting violations with

a static analysis tool

SA To
ol

Violations

Collecting violations

<ViolationInstance>
<ViolationType>
BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS

</ViolationType>
<ProjectName> nbm-maven-plugin</ProjectName>
<CommitVersionID>bdf3fe</CommitVersionID>
<FilePath>nb-repository-plugin/src/main/java/org/

codehaus/mojo/nbm/repository/PopulateRepository
Mojo.java</FilePath>

<StartLineNumber>1195</StartLineNumber>
<EndLineNumber>1195</EndLineNumber>

</ViolationInstance>



56

Tracking violations

Identify identical violations
between revisions*.

Detect whether a violation
is fixed, or just removed.

[*] P. Avgustinov, A. I. Baars, A. S. Henriksen, G. Lavender, G. Menzel, O. de Moor, M. Schfer, and J. Tibble, 
“Tracking Static Analysis Violations over Time to Capture Developer Characteristics,” in Proceedings of the 37th 
International Conference on Software Engineering, 2015, pp. 437–447.  



57

Parsing changes (i.e., patches)

UPD ReturnStatement@@”return getModule().equals(((ModuleWrapper) obj).getModule());” 
---INS InfixExpression@@”obj instanceof ModuleWrapper…” to ReturnStatement
------INS InstanceofExpression@@”obj instanceof ModuleWrapper ” to InfixExpression
---------INS Variable@@”obj” to InstanceofExpression
---------INS Operator@@”instanceof” to InstanceofExpression
---------INS SimpleType@@”ModuleWrapper” to InstanceofExpression
------MOV MethodInvocation@@” getModule().equals(…)” to InfixExpression

We used GumTree* to
identify AST-level changes.

[*] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained and accurate source code differencing,” in ACM/IEEE 
International Conference on Automated Software Engineering. Vasteras, Sweden - September 15 - 19: ACM, 2014, pp. 313–324. 




58

Tokenizing change information

[UPD ReturnStatement, INS InfixExpression, INS InstanceofExpression, INS Variable, INS 
Operator, INS SimpleType, MOV MethodInvocation]

UPD ReturnStatement@@”return getModule().equals(((ModuleWrapper) obj).getModule());” 
---INS InfixExpression@@”obj instanceof ModuleWrapper…” to ReturnStatement
------INS InstanceofExpression@@”obj instanceof ModuleWrapper ” to InfixExpression
---------INS Variable@@”obj” to InstanceofExpression
---------INS Operator@@”instanceof” to InstanceofExpression
---------INS SimpleType@@”ModuleWrapper” to InstanceofExpression
------MOV MethodInvocation@@” getModule().equals(…)” to InfixExpression

Token Embedding
(Word2Vec)

<2, 6, 9, …> <8, 4, 1, …> <9, 0, 7, …> <2, 3, 0, …> … <7, 1, 2, …> …



59

Autoencoder



60

Change Change

Autoencoder



61

……

n × k (a two-dimensional
numeric vector)

Input layer
C1: 4 feature maps

S1: 4 feature maps

C2: 6 feature maps

S2: 6 feature maps

Convolutional layer
Convolutional

layerSubsampling layer
Subsampling

layer Fully connected layers

Output
layer

UPD ReturnStatement
INS InfixExpression

INS InstanceofExpression
INS Variable
INS Operator

INS SimpleType
MOV MethodInvocation

INSMethod
0
0
0
0
0
0

Dense layer

Output is extracted
features

Embedding change information



62

Clustering Patches and Identifying Fix Patterns
Violation Type:
BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS

Patch Example:
- return exp1().equals(((T)obj).exp2());
+   return obj instanceof T && exp1().

equals(((T)obj).exp2());

Fix Pattern###:
UPD ReturnStatement
---INS InfixExpression
------MOV MethodInvocation
------INS InstanceofExpression
---------INS Variable
---------INS Instanceof
---------INS SimpleType
------INS Operator

[*] D. Pelleg, A. W. Moore et al., “X-means: Extending k-means with efficient estimation of the number of 
clusters.” in ICML, vol. 1, 2000, pp. 727–734.


*



63

Evaluation



64

9

Abstract representation of a patch:
@
var: a list variable.
T: the parameterized type of a list.
@
- (T[]) var.toArray(new T[0]);
+ (T[]) var.toArray(new T[var.size()])

Fig. 12: Example of an abstract representation of the patch in
Figure 11.

not new and common fix patterns may be an immediate
and appropriate way to address them automatically. For
example, when discussing the deluge of buggy mobile
software, Andy Chou, a co-designer of the Coverity bug
finding tool, reported that, based on his experience, the
found bugs are nothing new and are “actually well-known
and well-understood in the development community - the
same use after free and buffer overflow defects we have seen
for decades” [10]. In this vein, we design an approach to
mine common fix patterns for static analysis violations by
extracting changes that represent developers’ manual cor-
rections. Figure 9 illustrates our process for mining common
fix patterns.

Data Preprocessing.
As defined in Definition 5, a fix pattern contains a set of
change operations, which can be inferred by comparing the
buggy and fixed versions of source code files. In our study,
code changes of a patch are described as a set of change
operations in the form of Abstract Syntax Tree (AST) dif-
ferences (i.e., AST diffs). In contrast with GNU diffs, which
represent code changes as a pure text-based line-by-line edit
script, AST diffs provide a hierarchical representation of the
changes applied to the different code entities at different
levels (statements, expressions, and elements). We leverage
the open source GumTree [16] tool to extract and describe
change operations implemented in patches. GumTree, and
its associated source code, is publicly available, allowing
for replication and improvement, and is built on top of the
Eclipse Java model11.

All patches are tokenized into textual vectors by travers-
ing their AST-level diff tree with the deep-first search algo-
rithm and extracting the action string (e.g., UPD), the entity
type (e.g., ReturnStatement) and the entity identifier (e.g.,
return) as tokens of a change action (e.g., UPD ReturnState-
ment return). A given patch is thus represented as a list of
such tokens, further embedded and vectorized as a numeric
vector using the same method described in Section 2.4.3.

Fix Patterns Mining.
Patches can be considered as a special kind of natural
language text, which programmers leverage daily to request
and communicate changes in their community. Currently
available patch tools only perform directly the specified
operations (e.g., remove and add lines for GNU diff) so
far without the interpretation of what the changes are
about. Although all patches can be parsed and converted
into two-dimensional numeric vectors, it is still challenging
to mine fix patterns given that noisy change information

11http://www.vogella.com/tutorials/EclipseJDT/article.html

(e.g., specific changes) can interfere with identifying similar
patches. Thus, our method is designed to effectively learn
discriminating features of patches for mining fix patterns.

Similarly to the case of violation code pattern mining, we
leverage CNNs to perform deep learning of patch features
with preprocessed patches, and X-means clustering algo-
rithm to automatically cluster similar patches together with
learned features. Finally, we manually label each cluster
with fix patterns of violations abstracted from clustered
patches to show fix patterns clearly.

3 EMPIRICAL STUDY

3.1 Datasets

We consider project subjects based on a curated database of
Github.com provided through GHTorrent [49]. We select
projects satisfying three constraining criteria: (1) a project
has, at least, 50012 commits, (2) its main language is Java,
and (3) it is unique, i.e., not a fork of another project.
As a result, 2014 projects are initially collected. We then
filter out projects which are not automatically built with
Apache Maven. Subsequently, for each project, we execute
FindBugs on the compiled13 code of its revisions (i.e.,
committed version). If a project has at least two revisions
in which FindBugs can successfully identify violations, we
apply the tracking procedure described in Section 2.2 to
collecting data.

Table 1 shows the number of projects and violations used
in this study. There are 730 projects with 291,615 commits
where 250,387,734 violations are detected; these violations
are associated with 400 types defined by FindBugs. After
applying our violation tracking method presented in Sec-
tion 2.2 to these violations, as a result, 16,918,530 distinct
violations are identified.

TABLE 1: Subjects used in this study.
# Projects 730
# Commits 291,615
# Violations (detected) 250,387,734
# Distinct violations 16,918,530
# Violations types 400

3.2 Statistics on detected violations

We start our study by quickly investigating RQ1: “to what ex-
tent do violations recur in projects?”. We focus on three aspects
of violations: number of occurrences, spread in projects
and category distributions. Given that such statistics are
merely confirming natural distributions of the phenomenon
of defects, we provide all the details in the Appendix B of
this paper. Interested readers can also directly refer to the
replication package (including code and data) at :

https://github.com/FixPattern/findbugs-violations.

12A minimum number of commits is necessary to collect a sufficient
number of violations, which will be used for violation tracking.

13FindBugs runs on compiled bytecode (cf. Section 2.1).

Subjects

Collected from GitHub.com.

With at least one violation 
fixing commits.



65

Fix Patterns Identified

Violation Type:
BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS

Patch Example:
- return exp1().equals(((T)obj).exp2());
+   return obj instanceof T && exp1().equals(((T)obj).exp2());

Fix Pattern###:
UPD ReturnStatement
---INS InfixExpression
------MOV MethodInvocation
------INS InstanceofExpression
---------INS Variable
---------INS Instanceof
---------INS SimpleType
------INS Operator

We have identified
174 fix patterns for
111 violation types.

Example



66



67

Comparison (Defects4J)

Chart Closure Lang Math Mokito Time Total

AVATAR* 5 8 5 6 2 1 27

CapGen 4 0 5 12 0 0 21

Nopol 1 0 3 1 0 0 5

ACS 2 0 3 12 0 1 18

SimFix 4 6 9 14 0 1 34

Note that our fix patterns
are extracted only from 
violation fixing patterns.

[*] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandè, “AVATAR: Fixing Semantic Bugs with Fix Patterns of Static 
Analysis Violations,” in 2019 IEEE 26th International Conference on Software Analysis, Evolution and 
Reengineering (SANER), 2019, pp. 1–12.



68

Live Study

Subject
# Pull Requests

Submitted Merged Improved Rejected Ignored
json-simple 2 2
commons-io 2 2

commons-lang 7 1 1 5
commons-math 6 6

ant 16 9 1 4 2
cassandra 9 9

mahout 3 3
aries 5 5
poi 44 44

camel 22 14 8
Total 116 67 2 15 32



69

Plan

Error Prone



70

Plan

Error Prone

Statistical detection of bugs in bug finders



71

Plan

Error Prone



72

Plan

Error Prone

Statistical 
detection of false 
alarms



73

Summary

 X

Live Study

Subject
# Pull Requests

Submitted Merged Improved Rejected Ignored
json-simple 2 2
commons-io 2 2

commons-lang 7 1 1 5
commons-math 6 6

ant 16 9 1 4 2
cassandra 9 9

mahout 3 3
aries 5 5
poi 44 44

camel 22 14 8
Total 116 67 2 15 32

 X

……

n × k (a two-dimensional
numeric vector)

Input layer
C1: 4 feature maps

S1: 4 feature maps

C2: 6 feature maps

S2: 6 feature maps

Convolutional layer
Convolutional

layerSubsampling layer
Subsampling

layer Fully connected layers

Output
layer

UPD ReturnStatement
INS InfixExpression

INS InstanceofExpression
INS Variable
INS Operator

INS SimpleType
MOV MethodInvocation

INSMethod
0
0
0
0
0
0

Dense layer

Output is extracted
features

Embedding change information

 X

Overview
 X

Fixing based on bug description?
BC: Equals method should not assume anything about the type of its argument 
(BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS)
The equals(Object o) method shouldn't make any assumptions about the type of o. It should simply return false if o is not the 
same type as this.

BIT: Check for sign of bitwise operation (BIT_SIGNED_CHECK)
This method compares an expression such as ((event.detail & SWT.SELECTED) > 0). Using bit arithmetic and then 
comparing with the greater than operator can lead to unexpected results (of course depending on the value of 
SWT.SELECTED). If SWT.SELECTED is a negative number, this is a candidate for a bug. Even when SWT.SELECTED is not 
negative, it seems good practice to use '!= 0' instead of '> 0'.

CN: Class implements Cloneable but does not define or use clone method (CN_IDIOM) 

Class implements Cloneable but does not define or use the clone method.



